lunes, 10 de noviembre de 2008

BIOLOGIA



Procesos de división celular
Fisión binaria es la forma de división celular de las células procariotas.
Mitosis es la forma más común de la división celular en las células eucariotas. Una célula que ha adquirido determinados parámetros o condiciones de tamaño, volumen, almacenamiento de energía, factores medioambientales, puede replicar totalmente su dotación de ADN y dividirse en dos células hijas, normalmente iguales. Ambas células serán diploides o haploides, dependiendo de la célula madre.
Meiosis es la división de una célula diploide en cuatro células haploides. Esta división celular se produce en organismos multicelulares para producir gametos haploides, que pueden fusionarse después para formar una célula diploide llamada zigoto en la fecundación.
Los seres pluricelulares reemplazan su dotación celular gracias a la división celular y suele estar asociada a la
diferenciación celular. En algunos animales, la división celular se detiene en algún momento y las células acaban envejeciendo. Las células senescentes se deterioran y mueren, debido al envejecimiento del cuerpo. Las células dejan de dividirse porque los telómeros se vuelven cada vez más cortos en cada división y no pueden proteger a los cromosomas. Las células cancerosas son inmortales. Una enzima llamada telomerasa permite a estas células dividirse indefinidamente.
La característica principal de la división celular en organismos eucariotas es la conservación de los mecanismos genéticos del control del ciclo celular y de la división celular, puesto que se ha mantenido prácticamente inalterable desde organismos tan simples como las levaduras a criaturas tan complejas como el ser humano, a lo largo de la evolución biológica.


FASES DE LA MEIOSIS
Meiosis I

Profase I
La profase I de la primera división meiótica es la etapa más compleja del proceso y a su vez se divide en 5 subetapas, que son:
Leptoteno
La primera etapa de Profase I es la etapa del leptoteno, durante la cual los cromosomas individuales comienzan a condensar en filamentos largos dentro del núcleo. Cada cromosoma tiene un elemento axial, un armazón proteico que lo recorre a lo largo, y por el cual se ancla a la envuelta nuclear. A lo largo de los cromosomas van apareciendo unos pequeños engrosamientos denominados cromómeros.
Zigoteno
Los cromosomas homólogos comienzan a acercarse hasta quedar apareados en toda su longitud. Esto se conoce como sinapsis (unión) y el complejo resultante se conoce como bivalente o tétrada (nombre que prefieren los citogenetistas), donde los cromosomas homólogos (paternos y materno) se aparean, asociándose así cromátidas homólogas. Producto de la sinapsis, se forma una estructura observable solo con el microscopio electrónico, llamada complejo sinaptonémico, unas estructuras, generalmente esféricas, aunque en algunas especies pueden ser alargadas.
La disposición de los
cromómeros a lo largo del cromosoma parece estar determinado genéticamente. Tal es así que incluso se utiliza la disposición de estos cromómeros para poder distinguir cada cromosoma durante la profase I meiótica. Además el eje proteico central pasa a formar los elementos laterales del complejo sinaptonémico, una estructura proteica con forma de escalera formada por dos elementos laterales y uno central que se van cerrando a modo de cremallera y que garantiza el perfecto apareamiento entre homólogos. En el apareamiento entre homólogos también está implicada la secuencia de genes de cada cromosoma, lo cual evita el apareamiento entre cromosomas no homólogos. Además durante el zigoteno concluye la replicación del ADN (2% restante) que recibe el nombre de zig-ADN.
Paquiteno
Una vez que los cromosomas homólogos están perfectamente apareados formando estructuras que se denominan bivalentes se produce el fenómeno de entrecruzamiento (crossing-over) en el cual las cromatidas homólogas no hermanas intercambian material genético. La recombinación genética resultante hace aumentar en gran medida la variación genética entre la descendencia de progenitores que se reproducen por vía sexual.
La recombinación genética está mediada por la aparición entre los dos homólogos de una estructura proteica de 90 nm de diámetro llamada
nódulo de recombinación. En él se encuentran las enzimas que median en el proceso de recombinación.
Durante esta fase se produce una pequeña síntesis de ADN, que probablemente está relacionada con fenómenos de reparación de ADN ligados al proceso de recombinación.
Diploteno
Los cromosomas continúan condensándose hasta que se pueden comenzar a observar las dos cromátidas de cada cromosoma. Además en este momento se pueden observar los lugares del cromosoma donde se ha producido la recombinación. Estas estructuras en forma de X reciben el nombre quiasmas. Cada quiasma se origina en un sitio de entrecruzamiento, lugar en el que anteriormente se rompieron dos cromatidas homólogas que intercambiaron material genético y se reunieron.
En este punto la meiosis puede sufrir una pausa, como ocurre en el caso de la formación de los
óvulos humanos. Así, la línea germinal de los óvulos humanos sufre esta pausa hacia el séptimo mes del desarrollo embrionario y su proceso de meiosis no continuará hasta alcanzar la madurez sexual. A este estado de latencia se le denomina dictiotena.
Diacinesis
Esta etapa apenas se distingue del diploteno. Podemos observar los cromosomas algo más condensados y los quiasmas. El final de la diacinesis y por tanto de la profase I meiótica viene marcado por la rotura de la membrana nuclear. Durante toda la profase I continuó la síntesis de ARN en el núcleo. Al final de la diacinesis cesa la síntesis de ARN y desaparece el nucleolo.

Prometafase I
La membrana nuclear desaparece. Un cinetocoro se forma por cada cromosoma, no uno por cada cromátida, y los cromosomas adosados a fibras del huso comienzan a moverse. Algunas veces las tétradas son visibles al microscopio. Las cromatidas hermanas continúan estrechamente alineadas en toda su longitud, pero los cromosomas homólogos ya no lo están y su centrómeros y cinetocoros encuentran separados entre sí.

Metafase I
Los cromosomas homólogos se alinean en el plano de ecuatorial. La orientación es al azar, con cada homologo paterno en un lado. Esto quiere decir que hay un 50% de posibilidad de que las células hijas reciban el homólogo del padre o de la madre por cada cromosoma. Los microtubulos del huso de cada centríolo se unen a sus respectivos cinetocoros.

Anafase I
Los quiasmas se separan. Los microtúbulos del huso se acortan en la región del cinetocoro, con lo que se consigue remolcar los cromosomas homólogos a lados opuestos de la célula, junto con la ayuda de proteínas motoras. Ya que cada cromosoma homólogo tiene solo un cinetocoro, se forma un juego haploide (n) en cada lado. En la repartición de cromosomas homólogos, para cada par, el cromosoma materno se dirige a un polo y el paterno al contrario. Por tanto el número de cromosomas maternos y paternos que haya a cada polo varía al azar en cada meiosis. Por ejemplo, para el caso de una especie 2n = 4 puede ocurrir que un polo tenga dos cromosomas maternos y el otro los dos paternos; o bien que cada polo tenga uno materno y otro paterno.

Telofase I
Cada célula hija ahora tiene la mitad del número de cromosomas pero cada cromosoma consiste en un par de cromátidas. Los microtubulos que componen la red del huso mitótico desaparece, y una membrana nuclear nueva rodea cada sistema haploide. Los cromosomas se desenrollan nuevamente dentro de la cromatina. Ocurre la citocinesis (proceso paralelo en el que se separa la membrana celular en las células animales o la formación de esta en las células vegetales, finalizando con la creación de dos células hijas). Después suele ocurrir la intercinesis, parecido a una segunda interfase, pero no es una interfase verdadera, ya que no ocurre ninguna réplica del ADN. Este proceso es breve en todos los organismos, pero en algunos generalmente no ocurre.

Meiosis II

Profase II
Profase Temprana II
Comienza a desaparecer la envoltura nuclear y el nucleolo. Se hacen evidentes largos cuerpos filamentosos de cromatina, y comienzan a condensarse como cromosomas visibles
Profase Tardía II
Los cromosomas continúan acortándose y engrosándose. Se forma el huso entre los centríolos, que se han desplazado a los polos de la célula

Metafase II
Las fibras del huso se unen a los cinetocóros de los cromosomas. Éstos últimos se alinean a lo largo del plano ecuatorial de la célula. La primera y segunda metafase pueden distinguirse con facilidad, en la metafase I las cromatidas se disponen en haces de cuatro (tétrada) y en la metafase II lo hacen en grupos de dos (como en la metafase mitótica). Esto no es siempre tan evidente en las células vivas.

Anafase II
Las cromátidas se separan en sus centrómeros, y un juego de cromosomas se desplaza hacia cada polo. Durante la Anafase II las cromatidas, unidas a fibras del huso en sus cinetocóros, se separan y se desplazan a polos opuestos, como lo hacen en la anafase mitótica. Como en la mitosis, cada cromátida se denomina ahora cromosoma.

Telofase II
En la telofase II hay un miembro de cada par homologo en cada polo. Cada uno es un cromosoma no duplicado. Se reensamblan las envolturas nucleares, desaparece el huso acromático, los cromosomas se alargan en forma gradual para formar hilos de cromatina, y ocurre la citocinesis. Los acontecimientos de la profase se invierten al formarse de nuevo los nucleolos, y la división celular se completa cuando la citocinesis ha producidos dos células hijas. Las dos divisiones sucesivas producen cuatro núcleos haploide, cada uno con un cromosoma de cada tipo. Cada célula resultante haploide tiene una combinación de genes distinta. Esta variación genética tiene dos fuentes: 1 – Durante la meiosis, los cromosomas maternos y paternos se barajan, de modo que cada uno de cada par se distribuye al azar en los polos de la anafase I. 2 - se intercambian segmentos de ADN entre los homólogos paternos y maternos durante el entrecruzamiento.


FASES DE LA MITOSIS

La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La interfase típica se divide en tres fases:
G1: Esta fase tiene lugar desde que la célula nace hasta que inicia la etapa S. Tiene lugar la síntesis de ARNm con la cosiguiente producción de proteinas.
S: Replicación del ADNn y síntesis de ARNm e histonas
G2: Síntesis de proteínas (las que constituirán los microtúbulos del haz mitótico.

Profase
Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN) (que normalmente existe en forma de cromatina), con lo que se forman los cromosomas; y el desarrollo bipolar del huso mitótico. Uno de los hechos más tempranos de la profase en las células animales es la migración de dos pares de centriolos, previamente debe duplicarse el existente, hacia extremos opuestos de la célula. Se forma un huso acromático hecho de haces de microtúbulos, las fibras del huso. Los centriolos actúan como centros organizadores de microtúbulos, controlando la formación de esas fibras. En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear.

Prometafase
La envoltura nuclear se ha desorganizado y el huso mitótico organizado. Los cromosomas han sido alcanzados por fibras del huso (microtúbulos).

Metafase
Durante esta fase, las cromàtidas hermanas, las cuales se encuentran conectadas a cada polo de la célula por los microtúbulos unidos a los centròmeros, comienzan a moverse continuamente, hasta que migra a la zona media de la célula o plano ecuatorial, en la que forman una estructura llamada placa ecuatorial.

Anafase
Es la fase más corta de la mitosis, en la cual los microtúbulos del huso rompen los centrómeros longitudinalmente, lo que da lugar a la separación de las cromátidas hermanas, las cuales se dirigen a polos opuestos.

Telofase
En la telofase el nuevo núcleo se organiza: se reconstituye la cromatina, adoptando forma helicoidal los cromosomas, aparece el nucléolo, y se reconstruye la eucarioteca a partir del retículo endoplasmático.

miércoles, 5 de noviembre de 2008

clases de celulas y sus partes


DESCRIPCIÓN DE LAS PARTES DE LA CÉLULA
Nombre
Ubicación
Características
Funciones
1.- Membrana plasmática
En el exterior de la célula.
- Formada por una bicapa lipídica en la que están englobadas ciertas proteínas.
- Composición: lípidos (40%), proteínas (50%) y glúcidos (10%).
Controla el contenido químico de la célula.
2.- Citoplasma
Entre el núcleo celular y la membrana plasmática.
- Ocupa el medio líquido, o citosol, y el morfoplasma (orgánulos celulares).
Partes:
* Ectoplasma: región externa gelatinosa, esta próxima a la membrana e implicada en el movimiento celular.
* Endoplasma: se localizan la mayoría de organelas y es la parte interna más fluida.
Conserva en flotación a los orgánulos celulares y ayuda en sus movimientos.
2.1.- Retículo Endoplasmático
En la comunicación con la envoltura nuclear y se extiende por todo el citoplasma de la célula.
- Tiene un único espacio interno denominado lumen.
- Formado por cisterna, vesículas y túbulos torcidos.
Síntesis de proteínas, metabolismo de lípidos y algunos esteroides y transporte intracelular.
a) R.E.Rugoso
Entre la membrana nuclear y el R.E. Liso.
- Tiene ribosomas anclados a la membrana.
- Se comunica con la membrana nuclear y con el retículo endoplásmático liso.
Sintetiza las proteínas que forman parte de la membrana plasmática, aparato de Golgi, lisosomas y del propio retículo.
b) R.E. Liso
En la comunicación del R.E.R. y se limita con la membrana plasmática
- Carece de ribosomas.
- Formado por una red de túbulos unidos al RER, que se extiende por todo el citoplasma.
- Sintetiza todos los lípidos constituyentes de las membranas: colesterol, fosfolípidos, glucolípidos, etc.
2.2.- Ribosomas:
Ubicadas en el citosol, pero también se pueden ubicar adheridas en el R.E.R.
- Composición: dos complejos grande de ARN y proteína.
- Elabora proteínas de la información leída del ARN en el proceso de traslación.
2.3.- Mitocondrias:
- Se encuentran flotando en el citoplasma de todas las células eucariotas.
- Fuente de energía de las células, esta energía es recogida de las biomoléculas (azúcares y grasas).
- Rodeadas con una membrana doble a igual que el núcleo.
- Convierte nuestra comida en energía y nos la da en forma de ATP.
2.4.- Lisosomas:
Dispersos en el citoplasma.
- Vesículas que provienen del aparato de Golgi.
- Rodeada por una membrana, es de forma esférica.
Digiere las sustancias que lleguen a su interior.
2.4.- Aparato de Golgi:
Entre la membrana celular y la membrana externa del retículo endoplasmático rugoso.
- Formado por uno o varios dictiosomas ( agrupación paralela de cuatro a ocho
cisternas membranosas).
Transporte, maduración, acumulación y secreción de proteínas procedentes del R.E.
2.5.- Centriolos:
En la base de los cilios y flagelos (prolongaciones celulares adaptadas para el movimiento).
- Formado por nueve pares de filamentos periféricos y dos centrales.
- Al comenzar la división celular, cada centriolo se rodea de fibras dispuestas radialmente (aster).
Realiza la organización del huso mitótico, que va permitir la repartición del material genético (cromosomas) a cada célula hija.
2.6.- Vacuolas
a) De C. Vegetal:
Entre la pared externa del retículo endoplasmático y entre la membrana celular.
- Solo hay una en la c. vegetal.
- Es variable de tamaño.
- Esta rodeada por una membrana, repleta de agua y nutrientes (proteínas, azúcares, sales, etc.)
- Acumulación de reservas y productos tóxicos.
- Crecimiento de las células por presión de turgencia
b) De C. Animal:
Dispersas en el citoplasma.
- Vesículas de diámetros variados y limitan con una unidad de membranas.
- No tienen un gran tamaño.
- Su función es de encargarse de eliminar el exceso de agua.
3.- Núcleo:
Tiende a estar ubicado en una posición central en el citoplasma.
- Organización más característica de las células eucariotas.
- Esta rodeada de una cubierta propia, que es la envoltura nuclear.
- Controla las actividades celulares.
- Protege al material genético y permite que las funciones de transcripción y traducción se produzcan libremente en el espacio y tiempo
3.1.- Envoltura Nuclear:
Se encuentra cubriendo el núcleo
- Doble membrana llena de poros
Regula en intercambio de sustancias con el citoplasma
3.2.- Núcleo plasma:
Entre la envoltura nuclear y el nucléolo.
Es una sustancia semilíquida.
Mantiene suspendidos los cromosomas y el nucléolo.
3.3.- Cromatina:
Están rodeando al nucleolo.
- Forma que toma el material hereditario durante la interfase del ciclo celular
- Consiste en ADN asociado a proteínas.
3.4.- Nucléolo:
Ubicado dentro del núcleo.
- Cuerpo esférico.
- Puede existir varios nucleolos en un mismo núcleo depende del tipo de célula
Almacenador de A.R.N.
1.- Membrana Plasmtática:
2.- Citoplasma:
2.1.- Retículo Endoplasmático:
a) R.E.RUGOSO:
b) R.E.LISO:
2.2.- Ribosomas:
2.3.- Mitocondrias:
2.4.- Lisosomas:
2.5.- Aprato de Golgi:
2.6.- Centriolo:
2.7.- Vacuola:
3.- Nucleo:
Clases de Células:
Clases de Células
Criterios
1.- Por nutrición:
1.1.- Autótrofa:
1.2.- Heterótrofa:
- Obtienen su materia orgánica a partir de materia inorgánica (CO).
- Ejemplos: Célula de los vegetales.
- Obtienen la materia orgánica a partir de materia orgánica (sintetizada).
- Ejemplo: C. de los animales.
2.- Por su forma de vivir:
2.1.- Protistas:
2.2.- Asociadas:
- Viven solas cuando forman cuerpos unicelulares.
Ejemplos:
* Protozoos (Heterótrofos: ameba, paramecio)
* Protofitas (autótrofas: euglena).
- Viven así cuando hay más de una célula.
- Cada célula tiene su propia identidad y ejecuta todas sus funciones.
3.- Por su Complejidad:
3.1.- Procariotas
3.2.- Eucariotas:
- Carecen de envoltura nuclear( menos evolucionadas)
- Ejem: Bacterias y algas cianofíceas.
- Composición: una membrana plasmática, pocos orgánulos y ribosomas y un cromosoma circular.
- En el nucleoide se halla condensado la información genética.
- Más evolucionadas y complejas.
- Composición: orgánulos celulares, más de un cromosoma (lineales).
- La información genética esta rodeada por una envoltura nuclear, que la aísla y protege, y que constituye el núcleo.
4.- Por su Origen:
4.1.- C. Animal:
4.2.- C. Vegetal:
- Pueden ser geométricas(c. planas del epitelio), esféricas (glóbulos rojos), estrelladas (c. nerviosas) o alargadas (c. musculares)
- No tiene plastos pero si vacuolas de tamaño pequeño y centríolos.
- Tamaño: varían entre los 7,5 micrómetros de un glóbulo rojo humano, hasta unos 50 centímetros, como ocurre con las c. musculares.
- Presentan una membrana plasmática más dura(compuesta por celulosa)
- Vacuolas de gran tamaño y plastos.
- Gracias a su membrana rígida estas células presentan formas geométricas, ya vemos el caso de las células hexagonales en la cubierta de las cebollas.
1.- Por nutrición:1.1.- Autótrofa:
1.2.- Heterótrofa:
2.- Por su forma de vivir:2.1.- Protistas: Ameba
2.2.- Asociadas:
3.- Por su Complejidad:- Procariotas y Eucariotas:
4.- Por su Origen:- C. Animal y C. Vegetal:
Funciones de las Células:
FUNCIÓN DE NUTRICIÓN
Características que cumple la Célula
- Incorpora alimentos dentro de la célula,
- Asimila y transforma las sustancias útiles para que la célula pueda formar su propia materia.
Tipos de Nutrición de la Célula:
Características
N. Autótrofa
Las Células producen sus propios alimentos.
Hay dos Formas:
Fotosintética:
- Requieren de luz y sustancias inorgánicas para la fabricación sus alimentos.
- Se da en las plantas.
Quimiosintética:
- Extraen su alimento de energía química, y esta la obtienen de compuestos inorgánicos y dióxido de carbono.
- Se presentan el las bacterias.
N. Heterótrofa
- Toman del medio los alimentos que necesitan.
- Este tipo de nutrición se da en los hongos y protozoos.
Formas:
N: Holozoica: el alimento es adquirido en forma de partículas sólidas que deben ser ingeridas, digeridas y absorbidas.
N. Saprofítica: absorben los elementos nutritivos a través de la membrana celular ya que no pueden ingerir alimentos sólidos.
Parásito: existe entre algunos animales y plantas, se encuentran dentro o afuera de su huésped y a través de él consiguen sus alimentos.
Nutrición Autótrofa:
Nutrición Heterótrofa:
FUNCIÓN DE Relación
Características en las Células
Captan variaciones en las condiciones ambientales (estí­mulos) y elaborar las respuestas ade­cuadas para adaptarse a las nuevas condiciones.
Tipos de Relación de la Célula:
Características
a) Enquistamiento.
- Se da en algunas células.
- Crean una cubierta muy resistente cuando sienten que las condiciones son negativos y pasan a un esta­do de vida latente hasta que las condiciones sean favorables.
b) Tactismos.
- Son los movimientos frente a los estímulos.
- Son positivos cuando dirigen la célula hacia el estímulo y negativos cuando la alejan.
c) Movimiento ameboideo.
Formación de prolongaciones del cito­plasma (seudópodos), con los que la célula se moviliza y captura alimento.
- Se presenta en las amebas y de los glóbulos blancos.
d) Movimiento contráctil.
Contracción de las células en una dirección fija, gracias a estruc­turas intracelulares o miofibrillas, como las células musculares.
e) Movimiento vibratil
Movimiento de las células que tienen cilios o flagelos, como los espermatozoi­des o algunos protozoos.

futbol

HISTORIA
La historia del fútbol asociación, conocido simplemente como fútbol, suele considerarse a partir de 1863, año de fundación de The Football Association, aunque sus orígenes, al igual que los de los demás códigos de fútbol, se pueden remontar varios siglos en el pasado, particularmente en las Islas Británicas durante la Edad Media.[1] [2] Si bien existían puntos en común entre diferentes juegos de pelota que se desarrollaron desde el siglo III a. C. y el fútbol actual,[1] el deporte tal como se lo conoce hoy tiene sus orígenes en las Islas Británicas.[2]
Los primeros códigos británicos que dieron origen al fútbol asociación se caracterizaban por su poca organización y violencia extrema.[3] No obstante, también existían otros códigos menos violentos y mejor organizados: quizás uno de los más conocidos fue el calcio florentino, deporte de equipo muy popular en Italia que tuvo incidencia en los códigos de algunas escuelas británicas.[4] La formación definitiva del fútbol asociación tuvo su momento culminante durante el Siglo XIX. En 1848 representantes de diferentes colegios ingleses se dieron cita en la Universidad de Cambridge para crear el código Cambridge, que funcionaría como base para la creación del reglamento del fútbol moderno.[5] Finalmente en 1863 en Londres se oficializaron las primeras reglas del fútbol asociación.[6]
Desde entonces el fútbol ha tenido un crecimiento constante, hasta llegar a ser el deporte más popular del mundo con unas 270 millones de personas involucradas.[7] Con la realización de la primera reunión de la International Football Association Board en 1886 y la fundación de la FIFA en 1904, el deporte se ha expandido hasta llegar a todos los rincones del mundo. A partir de 1930 se comenzaría a disputar la Copa Mundial de Fútbol, que se convertiría en el evento deportivo con mayor audiencia del planeta.[8]